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ABSTRACT 
 
 

graph on 𝑛 vertices is said to admit a prime labeling 
if the vertices can be labeled with the first 𝑛 natural 
numbers in such a way that two adjacent vertices 
have relatively prime labels. In this paper, we define 
an order on the set of Eisenstein integers to extend 

the notion of prime labeling of graphs to the set of Eisenstein 
integers. Properties of the ordering are studied to come up with 
prime labelings of some families of graphs such as the flower, 
wheel, centipede, and double broom graphs. 
 
 
INTRODUCTION 
 
Graph labeling, an assignment of integers to the vertices (or 
edges) of a graph, is used in coding theory, x-ray crystallography, 
radar, astronomy, circuit design, communication network 
addressing, and database management [1]. Some daily life 

applications of graph labeling include scheduling schemes for 
guard posts and finding the shortest route between two places as 
exhibited by GPS systems, among others. Many techniques of 
labeling a graph have been examined over the last decades. For 
a comprehensive account on the history and results of graph 
labeling, the reader is referred to [2]. 
 
Prime labeling, a particular method of graph labeling, was 
introduced by Entringer in the 1980s. If 𝑉 is the set of vertices 
of a graph 𝐺 and |𝑉| = 𝑛, then 𝐺 has a prime labeling  if the 
vertices can be labeled with the first 𝑛 integers such that the 
vertices 𝑢 and 𝑣 have relatively prime labels whenever 𝑢𝑣 is an 
edge of 𝐺. Entringer conjectured that all trees admit a prime 
labeling but this has only been proven for small trees [3, 4, 5]. 
Nonetheless, many classes of graphs are known to admit prime 
labeling such as paths, cycles, stars, double stars, caterpillars, 
complete binary trees, binomial trees, spiders, palm trees, olive 
trees, banana trees, etc. 
 
Klee et al. (2016) showed that several families of trees admit a 
prime labeling using the Gaussian integers [6]. An order on ℤ[𝑖] 
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called the spiral ordering was introduced which made the 
labeling using the first 𝑛 Gaussian integers possible. Shrimali 
and Singh (2021), as a continuation of the work by Klee et al., 
explored more types of graphs and proved that they admit prime 
labelings using the Gaussian integers [7]. In this present work, 
we define an order on the set of Eisenstein integers and use 
properties of this ordering to obtain a prime labeling for some 
families of graphs using the Eisenstein integers. 
 
Preliminaries 
Eisenstein integers are complex numbers of the form 𝑎 + 	𝑏𝜔 

where 𝜔 =	𝑒
!"#
$  and 𝑎, 𝑏 ∈ ℤ. If 𝑏 = 0, the Eisenstein integer 

𝑎 + 𝑏𝜔 is said to be rational. The set of all Eisenstein integers 
is denoted by ℤ[𝜔], and like ℤ and ℤ[𝑖], is a unique factorization 
domain. The units of ℤ[𝜔]  are ±1,±𝜔,  and ±(𝜔 + 1) .  An 
associate of an Eisenstein integer 𝛼 is 𝛼𝑢 where 𝑢 is any unit in 
ℤ[𝜔].  The norm of 𝑎 + 𝑏𝜔, denoted 𝑁(𝑎 + 𝑏𝜔), is given by 
𝑎! − 𝑎𝑏 + 𝑏!. This norm function 𝑁 on ℤ[𝜔] is multiplicative, 
i.e., 𝑁(𝛼𝛽) = 𝑁(𝛼)𝑁(𝛽), for any 𝛼, 𝛽 ∈ ℤ[𝜔]. We say that an 
Eisenstein integer is even if the norm is even, and odd otherwise. 
Note that we use the term parity in this paper to denote the 
property of being odd or even of an Eisenstein integer.  
 
Now, an Eisenstein integer is prime if and only if its only nonunit 
divisors are its associates. In [8], it was shown that a prime 
Eisenstein integer falls under one of the following types: (i) it is 
an associate of −1 +𝜔 ; (ii) it is a rational prime 𝑝 ≡
2	(mod	3) ; or (iii) it is an Eisenstein integer 𝑎 + 𝑏𝜔  where 
𝑁(𝑎 + 𝑏𝜔) = 𝑝 ≡ 1	(mod	3) . Moreover, two Eisenstein 
integers 𝛼 and 𝛽  are relatively prime or coprime if and only if 
their common divisors are the units in ℤ[𝜔]. 
 
To illustrate, 5 and 3 + 2𝜔  are prime Eisenstein integers. 
However, 7 + 7𝜔 is not prime in ℤ[𝜔] because 7 + 7𝜔 = (3 +
𝜔)(3 + 2𝜔). Since 7 and 7 + 7𝜔 = 7(1 + 𝜔) are associates, 
then 7 is also not a prime Eisenstein integer. Moreover, 2 is 
relatively prime to 3 + 2𝜔 but 7 and 3 + 2𝜔 are not relatively 
prime since they have a nonunit common divisor, namely 3 +
2𝜔. 
 
A graph 𝐺 = (𝑉, 𝐸) is composed of two finite sets 𝑉 of vertices 
and 𝐸 of unordered pairs of distinct vertices called edges. The 
order of a graph 𝐺 is given by |𝑉|. We write 𝑢𝑣 ∈ 𝐸 to mean 
that there is an edge in 𝐸 that joins the vertices 𝑢, 𝑣 ∈ 𝑉. The 
degree of a vertex 𝑣 is 𝑛, denoted 𝑑(𝑣) = 𝑛, if there are 𝑛 edges 
incident to 𝑣 . Now, a path is a sequence of edges joining a 
sequence of distinct vertices. We say that a graph is connected 
if it does not contain two vertices which are not connected by a 
path, and unconnected otherwise. On the other hand, a cycle of 
a graph is a sequence of at least three distinct edges which begins 
and ends at the same vertex. We say that a graph is cyclic if it 
contains at least one cycle and acyclic otherwise. A tree is 
defined as a connected acyclic graph while a forest is a graph 
that is unconnected and acyclic. We call a vertex 𝑣 an internal 
node of a tree if 𝑑(𝑣) 	> 	1 while we call 𝑣 a leaf or endvertex 
of a tree if 𝑑(𝑣) = 1. 
 
 
MATERIALS AND METHODS 
 
Ordering of the Eisenstein Integers 
Similar to the Gaussian integer case, Eisenstein integers possess 
no natural ordering. Hence, we need to introduce an ordering to 
define what we mean by “the first 𝑛 Eisenstein integers” before 
we can proceed with the prime labeling of graphs.  Since 
associates of a given Eisenstein integer occur every 60∘ rotation 
about the origin, we will only consider the Eisenstein integers 
that lie in the sector K0, #$L .  This choice is purely out of 
convenience as it is easier to work with Eisenstein integers with 

positive components. This is comparable to the choice of 
Gaussian integers lying in Quadrant I as done by Klee et al. in 
[6]. 
 
Definition 3.1. (Diagonal Ordering of Eisenstein Integers) 
The 𝑛th Eisenstein integer 𝛾% is defined recursively as follows: 
𝛾& = 1, and for	𝑛 ∈ ℕ, if 𝛾% = 𝑎 + 𝑏𝜔, we have 
 

𝛾%'& =	

⎩
⎨

⎧
𝛾%	 + 1, if	𝑎 ≡ 1	(mod	2)	and	𝑏 = 0
𝛾% +𝜔 + 1, if	𝑎 ≡ 0	(mod	2)	and	𝑏 = 𝑎 − 1	
𝛾% +𝜔,
𝛾% −𝜔,

if	𝑎 ≡ 0	(mod	2)	and	𝑏 ≠ 𝑎 − 1
if	𝑎 ≡ 1	(mod	2)	and	𝑏 ≠ 0.

 

 
The diagonal ordering of the Eisenstein integers is shown in 
Figure 1. From this point onward, we take [𝛾%] to denote the set 
of the first 𝑛  Eisenstein integers. Thus, under this ordering, 
[𝛾&)] = {1, 2, 2 + 𝜔, 3 + 2𝜔, 3 + 𝜔, 3, 4, 4 + 𝜔, 4 + 2𝜔, 4 +
3𝜔} . If 𝛾  is the 𝑛 th Eisenstein integer under the diagonal 
ordering, we say that 𝛾 has index 𝑛 and write 𝐼(𝛾) = 𝑛. 
 

 
Figure 1: Diagonal Ordering of the Eisenstein Integers. 

At a glance, we can immediately deduce that not all properties 
of the usual ordering of ℕ  are preserved. The norm 𝑁(𝑎 +
𝑏𝜔) = 𝑎! − 𝑎𝑏 + 𝑏! is odd if and only if at least one of 𝑎 or 𝑏 
is odd. Thus, consecutive Eisenstein integers under the diagonal 
ordering may not always alternate parity. For instance, 3 + 𝜔 
and 3  occur consecutively but both their norms are odd. 
Nonetheless, some properties of the usual ordering of ℕ are still 
preserved, as can be seen in the next section. 
 
This definition of diagonal ordering leads to the following 
definition of prime labeling using Eisenstein integers. 
 
Definition 3.2. We say that a graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices 
admits an Eisenstein prime labeling if we can label its vertices 
with the first 𝑛 Eisenstein integers in the diagonal ordering in 
such a way that 𝑢, 𝑣 ∈ 𝑉 have relatively prime labels whenever 
𝑢𝑣 ∈ 𝐸. 
 
Properties of the Diagonal Ordering 
Here, we discuss properties of the diagonal ordering. We begin 
by setting terminologies for portions of the diagonal ordering. 
Corners are the Eisenstein integers occurring at the turning 
points of the ordering from east to northwest, from northwest to 
northeast, from northeast to southeast, or from southeast to east. 
If the corners occur at the real axis, then we call them real 
corners. A diagonal (of the ordering) consists of the Eisenstein 
integers traversed when going northwest or going southeast. 
 
In light of these new terminologies, we note that each diagonal 
contains exactly one real corner. Hence, we may define the 𝑘th 
diagonal line as the diagonal containing the real corner 𝑘 . 
Furthermore, even diagonals are the diagonals containing even 
real corners while odd diagonals are the diagonals containing 
odd real corners. Lastly, we define the initial point of a diagonal 
to be the corner when turning northwest or southeast and the 
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terminal point of a diagonal to be the corner when turning east 
or northeast. (The Eisenstein integer 1 is the lone vertex in its 
diagonal and hence neither an initial nor a terminal point.) 
 
Let 𝑘 ∈ ℕ. Then, the 𝑘th diagonal line consists of the Eisenstein 
integers 𝑘, 𝑘 + 𝜔, 𝑘 + 2𝜔,… , 𝑘 + (𝑘 − 1)𝜔.  If 𝑘 is even, then 
𝑘 occurs as the initial point of the 𝑘th diagonal. Otherwise, it 
occurs as the terminal point. Since the number of Eisenstein 
integers in all the diagonal lines is given by the sequence 
{1, 2, 3, … } , then the index of the terminal point of the 𝑘 th 
diagonal line is given by *(*'&)

!
. 

 
In Error! Reference source not found., odd Eisenstein integers 
are colored blue while even Eisenstein integers are colored red. 
Even integers occur only in even diagonals since 𝑁(𝑎 + 𝑏𝜔) is 
an even rational number if and only if both a and b are even. 
Hence, just like in ℤ, an Eisenstein integer is even if and only if 
it is a multiple of 2. Observe also that consecutive Eisenstein 
integers occurring along even diagonal lines alternate in parity. 
With this, consecutive even Eisenstein integers occurring along 
the same diagonal are two indices away from each other. On the 
other hand, successive even Eisenstein integers occurring along 
different diagonals are of the form 𝑘 + (𝑘 − 2)𝜔  and 𝑘 + 2, 
where 𝑘  is an even natural number and are therefore 𝑘 + 3 
indices away from each other. 
 
In the spiral ordering of Gaussian integers, it is possible for a 
prime Gaussian integer to be preceded by one of its multiples. 
However, this cannot happen given the usual order on ℕ and the 
diagonal ordering on ℤ[𝜔]. 
 
Lemma 3.1. Eisenstein primes are not preceded by their 
multiples in the diagonal ordering. 
 
Proof. Let 𝛾-  be a prime Eisenstein integer lying on the 𝑘 th 
diagonal line. If 𝛾-  is a rational prime 𝑝 , then 𝑁]𝛾-^ = 𝑝! . 
Otherwise, 𝑁]𝛾-^ = 𝑝 where 𝑝 is a rational prime. If 𝛾- ∣ 𝛼 for 
some Eisenstein integer 𝛼  and 𝛼  is not an associate of 𝛾- , it 
follows that 𝑁(𝛼) = 𝑚𝑝  or 𝑁(𝛼) = 𝑚𝑝!  for some positive 
integer 𝑚 > 1. The smallest possible values for the norm of 𝛼 
for each case are 𝑁(𝛼) = 3𝑝  or 𝑁(𝛼) = 3𝑝! , respectively. 
Thus, we only need to show that 𝛼  lies beyond the diagonal 
containing 𝛾-. 
 
Suppose γ-  occurs on the 𝑘 th diagonal line. Consider the 
equilateral triangle bounded by the real axis, the line arg(𝑧) = #

$
 

and the 𝑘 th diagonal line. A perpendicular bisector of this 
triangle is the line	arg(𝑧) = #

.
. Recall that the set of Eisenstein 

integers occurring on the 𝑘 th diagonal is given by 𝐴 =
{𝑘, 𝑘 + 𝜔,… , 𝑘 + (𝑘 − 1)𝜔}. The square roots of the norms of 
these Eisenstein integers are exactly their distance from the 
origin. Hence, using the symmetry along the #

.
 - axis, we may 

deduce that for any Eisenstein integer 𝛽 ∈ 𝐴, we have √$
!
𝑘 ≤

g𝑁(𝛽) ≤ 𝑘. Since 𝛾- ∈ 𝐴, it is enough to show that g𝑁(𝛼) >

𝑘 . But √$
!
𝑘 ≤	h𝑁]𝛾-^		 implies that 	√$

!
𝑘 ≤ g𝑝	 < 	𝑝  and so 

	$
!
𝑘 ≤ g3𝑝	 	< 	g3𝑝!	. Hence,	𝑘 < $

!
𝑘 ≤ g𝑁(𝛼) and the result 

follows.∎ 
 
Lemma 3.2. Let 𝛼 be an Eisenstein integer and 𝑢 be a unit of 
ℤ[𝜔]. Then 𝛼 and 𝛼 + 𝑢 are relatively prime. 
Proof. Suppose there exists an Eisenstein integer 𝛽 satisfying 
𝛽 ∣ 𝛼  and 𝛽 ∣ (𝛼 + 𝑢). Then 𝛽 ∣ 𝑢 = (𝛼 + 𝑢) − 𝛼  making 𝛽  a 
unit. Thus, 𝛼 and 𝛼 + 𝑢 are relatively prime.∎ 

 
Corollary 3.3. Consecutive Eisenstein integers in the diagonal 
ordering are relatively prime. 
 
Corollary 3.4. If 𝛾%, 𝛾%'! are odd Eisenstein integers, then they 
are relatively prime. 
 
Proof. The difference between odd Eisenstein integers that are 
two indices away from each other is one of the following: 
±1,±(1 + 𝜔),±2𝜔 . If there exists 𝛽 ∈ 	ℤ[𝜔]  dividing both 
integers, then it must divide their difference. If the difference is 
a unit, then by Lemma 3.2. , they are relatively prime. Suppose 
their difference is ±2𝜔. Then 𝑁(𝛽)|4. Hence, 𝑁(𝛽) ∈ {1,2,4} 
but 𝑁(𝛽) is odd by assumption and so  𝑁(𝛽) = 1. Hence, 𝛽 is a 
unit and the result follows.	∎ 
 
By Corollaries Corollary 3.3.  and Corollary 3.4. , we have that 
consecutive odd Eisenstein integers in the diagonal ordering are 
relatively prime. 
 
Given an Eisenstein integer 𝑎 + 𝑏𝜔  with 0 ≤ 𝑏 ≤ 𝑎 − 1 , we 
find its index under the diagonal ordering. We know 𝑎 + 𝑏𝜔 
occurs on the 𝑎th diagonal line. Now, the index of the terminal 
point of the (𝑎 − 1)th diagonal line is given by (01&)0

!
. Hence, 

we only need to find how many indices away from the initial 
point of the 𝑎th diagonal line 𝑎 + 𝑏𝜔 is and add it to (01&)0

!
. We 

consider two cases. 
 

(1) If 𝑎 is even, then the initial and terminal point of the 
𝑎 th diagonal line is the real corner 𝑎  and 𝑎 +
(𝑎 − 1)𝜔 , respectively. An Eisenstein integer that 
follows any Eisenstein integer between 𝑎  and 𝑎 +
(𝑎 − 1)𝜔  in the diagonal ordering is obtained by 
simply adding 𝜔 to the preceding Eisenstein integer. 
Hence, in this case, 𝑏  is the number of Eisenstein 
integers occurring before 𝑎 + 𝑏𝜔 in the 𝑎th diagonal 
line. This implies that 𝑎 + 𝑏𝜔  is 𝑏 + 1  steps away 
from the terminal point of the (𝑎 − 1)th diagonal line. 

 
(2) If 𝑎 is odd, then the initial and terminal points of the 

𝑎 th diagonal line are 𝑎 + (𝑎 − 1)𝜔  and 𝑎 , 
respectively. The Eisenstein integers on this diagonal 
are now obtained by subtracting 𝜔  repeatedly from 
𝑎 + (𝑎 − 1)𝜔 . Thus, there will be (𝑎 − 1) − 𝑏 
Eisenstein integers preceding 𝑎 + 𝑏𝜔  on the 𝑎 th 
diagonal line in this case. 

 
These results are summarized in the following lemma. 
 
Lemma 3.5. Let 𝑎 + 𝑏𝜔 be an Eisenstein integer with 0 ≤ 𝑏 ≤
𝑎 − 1. Then the index of 𝑎 + 𝑏𝜔 under the diagonal ordering is 
given by 
 

𝐼(𝑎 + 𝑏𝜔) = k

(𝑎 − 1)𝑎
2 + 𝑏 + 1,														if	𝑎 ≡ 0	(mod	2)

(𝑎 − 1)𝑎
2 + (𝑎 − 𝑏), if	𝑎 ≡ 1	(mod	2).

 

 
Going in the opposite direction is a little more complicated. If 
we wish to find the Eisenstein integer 𝛾% for a fixed index 𝑛, we 
have to first identify the diagonal line where 𝛾%  lies. If we 
assume that 𝛾% is found on the 𝑘th diagonal line, one can easily 
verify that 𝑘 = l1&	'√2%'&! m using the fact that the index of the 
terminal point of each diagonal is a triangular number. Then, 
reversing the results of Lemma 3.5. yields the following 
equations. 
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Lemma 3.6. Let 𝑛  be a fixed positive integer and let 𝑘 =
l1&	'√2%'&! m. Then 
 

𝛾% =

⎩
⎪
⎨

⎪
⎧𝑘 + o𝑛 − 1 −

(𝑘 − 1)𝑘
2 p𝜔,														if	𝑘 ≡ 0	(mod	2)

𝑘 + q𝑘 − o𝑛 −
(𝑘 − 1)𝑘

2 pr𝜔, if	𝑘 ≡ 1	(mod	2).
 

 
Given an Eisenstein integer 𝑎 + 𝑏𝜔 where 0 ≤ 𝑏 ≤ 𝑎 − 1, we 
can now find the index upon which it occurs in the diagonal 
ordering, and vice versa. For graph labeling purposes in the next 
section, it is also useful if we can count the number of even 
Eisenstein integers that are inside [𝛾%] for a fixed 𝑛.  

 
We already know that even Eisenstein integers occur only along 
even diagonal lines and that consecutive Eisenstein integers 
along even diagonal lines alternate parity. It follows that there 
are exactly 3

!
 even Eisenstein integers along an even diagonal 

with real corner 𝑚 . This implies that the number of even 
Eisenstein integers in successive even diagonals is given by the 
sequence {1,2,3, … }.  Hence, whenever 𝑚 is even, the number 
of even Eisenstein integers contained in s𝛾%(%'()

"
t , where 

𝛾%(%'()
"

 is the terminal point of the 𝑚th diagonal line, is given by 

 

																					" 𝑖

!
"

#$%

= 1 + 2 + 3 +⋯+
𝑚
2 =

+𝑚2,+
𝑚
2 + 1,
2 =

𝑚(𝑚 + 2)
8 .																						(1)

Suppose 𝛾% is in the 𝑘th diagonal line and assume 𝑘 is odd. Then 
the number of even Eisenstein integers occurring before the 
initial point up to the terminal point of the 𝑘th diagonal line is 
given by the number of even Eisenstein integers contained in 

s𝛾(*+()*
"
t , where 𝛾(*+()*

"
 is the terminal point of the (𝑘 − 1)th 

diagonal line. By Equation (1), the number of even Eisenstein 
integers contained in [𝛾%] is given by 
 

																																												
(𝑘 − 1)(𝑘 + 1)

8 .																																				(2) 
 
If 𝑘 is even, we can use Equation (2) to count the number of 
even Eisenstein integers occurring before the terminal point of 
the (𝑘 − 1)th diagonal line. This number is now the same as the 
number of even Eisenstein integers contained in s𝛾(*+")(*+()

"
t 

which is equal to (*1!)*
2

. We are now left to count the even 
Eisenstein integers along the 𝑘th diagonal line starting from the 
initial point up to 𝛾%. 
 
From Lemma 3.6, we deduced that 𝛾% = 𝑘 + K𝑛 − 1 −
(*1&)*

! v 𝜔  since 𝑘  is even. This implies that 𝛾%  is exactly 𝑛 −
(*1&)*

!
 indices away from the initial point of the 𝑘th diagonal line. 

Since consecutive Eisenstein integers alternate parity starting 
from even along this diagonal, then there are w%'&! − (*1&)*

4 x 
even Eisenstein integers starting from the initial point up to 𝛾%. 
Finally, the number of even Eisenstein integers contained in [𝛾%] 
is given by 
 

(𝑘 − 2)𝑘
8 + y

𝑛 + 1
2 −

(𝑘 − 1)𝑘
4 z. 

 
These results are formalized in the following theorem. 
 
Theorem 3.7. Let 𝑛 ∈ ℕ and 𝑘 = l1&	'√2%'&! m. Then the number 
𝐸(𝛾%) of even Eisenstein integers contained in [𝛾%] is given by 
 

𝐸(𝛾%) =

⎩
⎪
⎨

⎪
⎧ (𝑘 − 1)(𝑘 + 1)

8 ,																																							if	𝑘	is	odd

(𝑘 − 2)𝑘
8 + y

𝑛 + 1
2 −

(𝑘 − 1)𝑘
4 z , if	𝑘	is	even.

 

 
 
Prime Labeling Results 

In this section, we consider some families of graphs and show 
that they admit an Eisenstein prime labeling under the diagonal 
ordering. We also deal with other families of graphs and give 
values of 𝑛 for which they admit an Eisenstein prime labeling 
using the first 𝑛 Eisenstein integers. Path, cycle, and star graphs, 
defined formally below, are easily shown to admit Eisenstein 
prime labeling by Corollary 3.3. For a vertex 𝑣 in a graph 𝐺, we 
shall denote by ℓ(𝑣) the label of the vertex 𝑣. 
 
Definition 4.1. Let 𝑛 ∈ ℕ. A path graph 𝑃% = (𝑉, 𝐸) is a graph 
with 𝑉 = {𝑣&, 𝑣!, … , 𝑣%} and 𝐸 =	 {𝑣5𝑣5'&: 1 ≤ 𝑖 ≤ 𝑛 − 1}. 
 
Definition 4.2. Let 𝑛 ≥ 3. A cycle graph 𝐶% = (𝑉, 𝐸) is a graph 
with 𝑉 = {𝑣&, 𝑣!, … , 𝑣%}  and 𝐸 = {𝑣5𝑣5'&: 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪
{𝑣&𝑣%}. 
 
Definition 4.3. Let 𝑛 ≥ 3. A star graph 𝑆% = (𝑉, 𝐸) is a graph 
with 𝑉 =	 {𝑣&, 𝑣!, … , 𝑣%'&}  and 𝐸 =	 {𝑣&𝑣5: 2 ≤ 𝑖 ≤ 𝑛 + 1} . 
We call 𝑣& the center of 𝑆%. 
 
To achieve Eisenstein prime labeling for the aforementioned 
graphs, we simply let ℓ(𝑣5) = 𝛾5 . By Corollary 3.3. the path 
graph 𝑃%  admits an Eisenstein prime labeling for any 𝑛 . 
Additionally, since 𝛾& = 1 is relatively prime to any Eisenstein 
integer, then the cycle graph 𝐶% and the star graph 𝑆% both admit 
Eisenstein prime labelings for any 𝑛. 
 
Theorem 4.1. The path graph 𝑃%, the cycle graph 𝐶%, and the 
star graph 𝑆% all admit  Eisenstein prime labelings. 
 
In graph theory, we say that a tree is rooted if there exists a 
distinguishable vertex where the other parts of the tree originate. 
The star graph is an example of a rooted tree with the central 
vertex 𝑣& as the root. Note that if we remove 𝑣&, we are left with 
a collection of 𝑛 isolated vertices which is essentially a forest 
consisting of 𝑛 copies of 𝑃&. Thus, given a rooted tree 𝑇 with 
root 𝑣&, taking ℓ(𝑣&) = 1 gives us a guarantee that as long as we 
can give a prime labeling for the forest 𝑇 − {𝑣&} , the graph 
admits an Eisenstein prime labeling. The spider graph and the 
generalized friendship graph (although not a tree) benefit from 
this labeling strategy. 
 
Definition 4.4. A spider tree is a tree with one vertex of degree 
≥ 3 and all other vertices having degree 1 or 2. 
 
Definition 4.5. Let 𝑛 ≥ 2  and 𝑚 ≥ 3 . The generalized 
friendship graph 𝑓3,%  is a graph with 𝑛(𝑚 − 1) + 1  vertices 
consisting of 𝑛  copies of the cycle graph 𝐶3  meeting at a 
common vertex. 
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As what was done to paths, cycles, and stars, we briefly explain 
why Eisenstein prime labelings always exist for spiders and 
friendship graphs. 
 
Given a spider graph, let 𝑣&  be of degree 𝑗 , where 𝑗 ≥ 3 . 
Removing 𝑣& leaves us with paths 𝑃*( , 𝑃*" , … , 𝑃*, with lengths 
𝑘&, 𝑘!, … , 𝑘7  respectively. Label 𝑣&  with 1, then label the 
vertices of 𝑃*( with the next 𝑘& Eisenstein integers, the vertices 
of 𝑃*"  with the next 𝑘!  Eisenstein integers, and so on. Since 
consecutive Eisenstein integers are relatively prime and ℓ(𝑣&) =
1 is relatively prime to any Eisenstein integer, then the spider 
tree admits an Eisenstein prime labelling. 
 
The generalized friendship graph is also known as a flower 
graph where the cycles 𝐶3 are regarded as petals. Let 𝑣& be the 
common vertex of the 𝑛 petals. Removing 𝑣& leaves us with 𝑛 
copies of 𝑃81&. Let ℓ(𝑣&) = 1 and label the vertices of the first 
𝑃81& with the next 𝑚− 1 Eisenstein integers, the vertices of the 
second 𝑃81& with the next 𝑚− 1 Eisenstein integers, and so on. 
Using the same reasoning applied for a spider graph, the 
generalized friendship graph admits an Eisenstein prime 
labeling. 
 
Theorem 4.2. Any spider graph admits an Eisenstein prime 
labeling. Given positive integers 𝑛 ≥ 2  and 𝑚 ≥ 3 , the 
generalized friendship graph 𝑓3,%  admits an Eisenstein prime 
labeling. 
 
The labeling strategy for the next graph is not as straightforward 
as the ones utilized for the graphs considered earlier. We note 
that the way graphs are defined in this paper enables us to 
conveniently label a vertex 𝑣5  by the Eisenstein integer 𝛾5  to 
come up with an Eisenstein prime labeling. If this is not feasible, 
then adjustments with the labeling need to be done. This is 
illustrated in the next graph. 
 
Definition 4.6. Let 𝑛 ≥ 4 . A wheel graph 𝑊% = (𝑉, 𝐸)  is a 
graph with 𝑉 =	 {𝑣&, 𝑣!, … , 𝑣%}  and 𝐸 =	 {𝑣&𝑣5: 2 ≤ 𝑖 ≤ 𝑛} ∪
{𝑣5𝑣5'&: 2 ≤ 	𝑖 ≤ 	𝑛 − 1} ∪ {𝑣!𝑣%}. 
 
Theorem 4.3. For any positive integer 𝑛 ≥ 4, the wheel graph 
𝑊%  admits an Eisenstein prime labeling. 
 
Proof. First, note that if 𝑣& is removed from 𝑊%, what is left is 
the cycle 𝐶%1&. Temporarily label 𝑣5 with 𝛾5 for 𝑖 ∈ {1, 2, . . . , 𝑛}. 
Under this labeling scheme, the cycle might not necessarily have 
relatively prime labels for 𝑣! and 𝑣%. However, if 𝛾% is odd, then 
it is relatively prime to 𝛾! = 2. In this case, the graph admits an 
Eisenstein prime labeling as ℓ(𝑣&) = 𝛾&	 is relatively prime to 
any Eisenstein integer. 
 
If 𝛾% is even, we consider two cases. 
 

(a) If 𝛾% ∉ ℤ, consider the set 𝑆 = [𝛾%] ∖ {𝛾% − 1}. Note 
that if 𝛾% lies on the 𝑘th diagonal line, then 𝛾% − 1	is 
the Eisenstein integer located on the (𝑘 − 1) th 
diagonal line, exactly one step to the left of 𝛾% . 
Moreover, we note that the “jump” in set 𝑆 happens 
between two odd Eisenstein integers two indices away 
from each other and are thus relatively prime by 
Corollary 3.4. . Now, we take ℓ(𝑣%) = 𝛾% − 1  and 
label {𝑣&, 𝑣!, … , 𝑣%1&}  consecutively with the 
Eisenstein integers contained in 𝑆. Since 𝛾% and 𝛾% −
1 differ by a unit, then they are coprime. Thus, we 
arrive at an Eisenstein prime labeling. 

(b) If 𝛾% ∈ ℤ, we further deal with two subcases. 

(i) If 𝛾% is not divisible by 3, then we let ℓ(𝑣5) = 𝛾5 
for 1 ≤ 𝑖 ≤ 𝑛 − 2 and take ℓ(𝑣%) = 𝛾%1& which 
is odd, and ℓ(𝑣%1&) = 𝛾%. This makes 𝛾%1! and 
𝛾% adjacent. But by the definition of our diagonal 
ordering, 𝛾%1!  and 𝛾%  differ by −1 +𝜔 . By 
assumption, the norm of 𝛾%  is not divisible by 
3 = 𝑁(−1 +𝜔) , and thus 𝛾%1!  and 𝛾%  are 
relatively prime. Hence, prime labeling is 
achieved. 

(ii) If 𝛾%  is divisible by 3, then 𝛾% = 6𝑚 for some 
𝑚 ∈ ℕ . We then “insert'” 𝛾%  between the two 
odd Eisenstein integers (6𝑚 − 1) + 3𝑚𝜔  and 
(6𝑚 − 1) + (3𝑚 − 1)𝜔 . If 𝛾* =	(6𝑚 − 1) +
(3𝑚 − 1)𝜔, then the labeling technique for 𝑊% 
is more explicitly described as follows: 

ℓ(𝑣7) = 	�
𝛾7 , if	1 ≤ 𝑗 ≤ 𝑘 − 1
𝛾%, if	𝑗 = 𝑘	
𝛾71&, if	𝑘 < 𝑗 ≤ 𝑛.

 

From this labeling, we are now assured that 
ℓ(𝑣!) = 2  and ℓ(𝑣%) = 6𝑚 − 1  are relatively 
prime. 
 
Now, since 𝛾*1& = (6𝑚 − 1) + 3𝑚𝜔 and 𝛾* =
(6𝑚 − 1) + (3𝑚 − 1)𝜔 are both odd, then any 
divisor of 𝛾%  common with either 𝛾*1&  or 𝛾* 
must divide 3𝑚. If 𝑟 is an Eisenstein integer such 
that 𝑟 ∣ 3𝑚  and 𝑟 ∣ 𝛾*1& , then 𝑟  divides any 
linear combination of 3𝑚  and 𝛾*1& . In 
particular, 𝑟 ∣ ((2 + 𝜔)3𝑚 −	𝛾*1&	) ⟺ 𝑟 ∣ 1 . 
Similarly, if 𝑟 divides both 3𝑚 and 𝛾*, then we 
must have 𝑟 ∣ (1 + 𝜔)  noting that 𝑟 ∣ ](2 +
𝜔)3𝑚 − 𝛾*^ . These imply that 𝑟  is a unit in 
ℤ[𝜔]  and hence 𝛾%  is relatively prime to both 
𝛾*1&  and 𝛾* . With the rest of the labels being 
successive Eisenstein integers, and ℓ(𝑣&) being 
relatively prime to all elements of [𝛾%], then a 
prime labeling is achieved. 
 
Hence, in any case, 𝑊%  admits an Eisenstein 
prime labeling.	∎ 

 
Figure 2: Eisenstein prime labeling for 𝑾𝟗. 
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Figure 3: Eisenstein prime labeling for 𝑾𝟏𝟔. 

Definition 4.7. An 𝑛-centipede tree 𝑐% = (𝑉, 𝐸)  is a tree with 
𝑉 = {𝑣&, 𝑣!, … , 𝑣!%}  and 𝐸 =	 {𝑣!51&𝑣!5 ∶ 1 ≤ 𝑖 ≤ 𝑛} ∪
	{𝑣!51&𝑣!5'& ∶ 1 ≤ 𝑖 ≤ 𝑛 − 1}. 
 
As the name suggests, 𝑐% may be viewed as a centipede whose 
body consists of the path 𝑃%  with edges {𝑣!51&𝑣!5'&:	1 ≤ 𝑖 ≤
𝑛 − 1} and whose legs consists of 𝑛 copies of 𝑃! described by 
the edges {𝑣!51&𝑣!5: 1 ≤ 𝑖 ≤ 𝑛}. Now, if we label 𝑣5  with 𝛾5 , 

then the even Eisenstein integers would occur on the endvertices 
of consecutive legs, or on consecutive vertices of the centipede's 
body. This is due to the nature of even Eisenstein integers 
occurring along the same diagonal line being two indices away 
from each other. If the latter situation takes place, one must 
employ a switching scheme in order to guarantee the prime 
labeling of 𝑐% as described in the proof of the following theorem. 
 
Theorem 4.4. Any n-centipede tree 𝑐% admits an Eisenstein 
prime labeling. 
 
Proof. Temporarily label 𝑣5  with 𝛾	5 . Suppose a string of 
adjacent even Eisenstein integers occur along the vertices 
𝑣9'!, 𝑣9'4, … , 𝑣9':  (for some 𝑟, 𝑠 ∈ ℕ where 𝑟 is odd and 𝑠 is 
even) which lie on the body of the centipede. In this situation, 
the labeling is not prime. Whenever this happens, we employ a 
switching scheme to mend the labeling of the portion of the 
graph shown in Error! Reference source not found.(A).  This 
is done by swapping the labels of 𝑣9'5  and 𝑣9'5'&  for 𝑖 ∈
{2,4,… , 𝑠}.  The outcome for this switching scheme is illustrated 
in Error! Reference source not found. (B). After applying the 
switch, the adjacent labels for 𝑣9'!, 𝑣9'4, … , 𝑣9': are now odd 
Eisenstein integers two indices away from each other which are 
relatively prime. Meanwhile, 𝛾9  and 𝛾9'$  are now labels for 
adjacent vertices and so is the pair 𝛾9':'&  and 𝛾9':'! .  The 
second pair will pose no problem since they are consecutive odd 
Eisenstein integers. Now, following the definition of our 
diagonal ordering, 𝛾9'! = 𝑘 where 𝑘 is the even natural number 
contained in the 𝑘th diagonal. Consequently, 𝛾9 = 𝑘 − 1 +𝜔 
and 𝛾9'$ = 𝑘 +𝜔. Since 𝛾9 and 𝛾9'$ differ by a unit, they are 
relatively prime by Lemma 3.2. and the result follows. ∎ 

 
Figure 4: (A) Switching scheme for the string of even Eisenstein integers colored red. (B) Outcome after employing the switching scheme 
for the string of even Eisenstein integers.
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We finish this section by giving prime labelings to double broom 
graphs. 

Definition 4.8. Let 𝑘,𝑚, 𝑛 be positive integers with 𝑘 ≥ 2. A 
double broom graph 𝐷𝐵(𝑚, 𝑘, 𝑛) = (𝑉, 𝐸) is a graph on 𝑚+
𝑘 + 𝑛  vertices with 𝑉 = {𝑢5: 1 ≤ 𝑖 ≤ 𝑚} ∪ {𝑣5: 1 ≤ 𝑖 ≤ 𝑘} ∪
{𝑤5: 1 ≤ 𝑖 ≤ 𝑛} and 𝐸 = {𝑢5𝑣&: 1 ≤ 𝑖 ≤ 𝑚} ∪ {𝑣5𝑣5'&: 1 ≤ 𝑖 ≤
𝑘 − 1} ∪ {𝑣*𝑤5: 1 ≤ 𝑖 ≤ 𝑛}. 

Many classes of graphs can be obtained from 𝐷𝐵(𝑚, 𝑘, 𝑛) using 
specific values of 𝑚, 𝑘, or 𝑛 . For instance, 𝐷𝐵(1, 𝑘, 1) is the 
path graph 𝑃*'! . If 𝑛 > 1  (resp. 𝑚 > 1 ), 𝐷𝐵(1, 𝑘, 𝑛)  (resp. 
𝐷𝐵(𝑚, 𝑘, 1)) is called a broom graph. If 𝑘 = 2 and 𝑚,𝑛 ≥ 3, 
the resulting graph 𝐷𝐵(𝑚, 2, 𝑛) is known as the 𝑏𝑖𝑠𝑡𝑎𝑟 graph 
𝐵3,%  which is essentially two star graphs 𝑆3  and 𝑆%  whose 
central vertices are joined by an edge. 

Theorem 4.5. If 𝑚+ 𝑛 ≥ 6  and 𝑘 ≤ max{𝑚, 𝑛} , then the 
double broom graph 𝐷𝐵(𝑚, 𝑘, 𝑛) admits an Eisenstein prime 
labeling. 

Proof. From Theorem 3.7. , it can be easily verified that 
𝐸(𝛾3'*'%) ≤

3'*'%
$

 whenever 𝑚+ 𝑛 ≥ 6  and 𝑘 ≤
max{𝑚, 𝑛}. This means that 𝐸(𝛾3'*'%) ≤ 𝑚 or 𝐸(𝛾3'*'%) ≤
𝑛  or 𝐸(𝛾3'*'%) ≤ 𝑘 . Let 𝑀 = max{𝑚, 𝑛} . In any case, 

𝐸(𝛾3'*'%) ≤ 𝑀, and 𝐸(𝛾3'*'%) cannot be greater than both 
𝑚 and 𝑛 at the same time.  

To show that 𝐷𝐵(𝑚, 𝑘, 𝑛) admits an Eisenstein prime labeling, 
we are going to use the following facts: (i) 𝛾! = 2 is relatively 
prime to each odd Eisenstein integer; (ii) 𝛾& = 1 is relatively 
prime to every other Eisenstein integer; and (iii) consecutive 
Eisenstein integers as well as consecutive odd Eisenstein 
integers are relatively prime to each other. The main idea is to 
utilize all the even Eisenstein integers in labeling a portion of the 
broom whose number of endvertices is greater than 𝐸(𝛾3'*'%). 

Without loss of generality, assume that 𝑀 = 𝑚. Define the sets 
𝑉3 =	 {𝑢&, … , 𝑢3}, 𝑉* =	 {𝑣!, … , 𝑣*1&}, and 𝑉% =	 {𝑤&, … ,𝑤%}. 
Let ℓ(𝑣&) = 1 and ℓ(𝑣*) = 2. (Note that 𝑉* is empty if 𝑘 = 2.) 
Use all the even elements in [𝛾3'*'%] ∖ {𝛾!} to label a subset of 
𝑉3. The remaining vertices of 𝑉3 along with the vertices in 𝑉* ∪
𝑉%  shall then be labeled with the odd Eisenstein integers in 
[𝛾3'*'%] in succession. 

To put things more formally, we partition [𝛾3'*'%] using the 
subsets 𝐸 = �𝑒7: 1 ≤ 	𝑗 ≤ 𝐸(𝛾3'*'%)�  and 𝑂 = �𝑓7: 1 ≤ 𝑗 ≤
𝑚 + 𝑘 + 𝑛 − 𝐸(𝛾3'*'%)�, where 𝑒7  (resp. 𝑓7 ) is the 𝑗th even 
(resp. odd) Eisenstein integer in [𝛾3'*'%]  according to the 
diagonal ordering. The labeling detailed in the previous 
paragraph is now described by the following rule: 

ℓ(𝑣) = 	

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑓! = 1, if	𝑣 = 𝑣!
𝑒! = 2, if	𝑣 = 𝑣" 	
𝑒#$!, if	𝑣 = 𝑢# 	for	1 ≤ 𝑗 ≤ 𝐸(𝛾%$"$&) − 1	
𝑓#'((*;<=<>)$!, if	𝑣 = 𝑢# 	for	𝐸(𝛾%$"$&) + 1 ≤ 𝑗 ≤ 𝑚
𝑓%'((*;<=<>)$# , if	𝑣 = 𝑣# 	for	2 ≤ 𝑗 ≤ 𝑘 − 1
𝑓%$"'((*;<=<>)$# , if	𝑣 = 𝑤# 	for	1 ≤ 𝑗 ≤ 𝑛.

We have therefore shown that if 𝑚+ 𝑛 ≥ 6  and 𝑘 ≤
max{𝑚, 𝑛}, 𝐷𝐵(𝑚, 𝑘, 𝑛) has a prime labeling.	∎ 

 

Figure 5: Eisenstein prime labeling for 𝑩𝟕,𝟒.
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As noted earlier, 𝐷𝐵(𝑚, 𝑘, 𝑛) is the bistar graph 𝐵3,% whenever 
𝑘 = 2. Since 𝑚,𝑛 ≥ 3 for a bistar graph and 𝑘 < 	3, then the 
conditions of Theorem 4.5.  are met. It follows therefore that any 
bistar graph 𝐵3,%  also admits a prime labeling. We show in 

Error! Reference source not found. a prime labeling for the 
bistar graph 𝐵?,4  while Error! Reference source not found. 
shows a prime labeling for the double broom 𝐷𝐵(7,4,6). Both 
labelings are obtained following the procedure described in the 
proof of Theorem 4.5.  

 

Figure 6: Eisenstein prime labeling for 𝑫𝑩𝟕,𝟒,𝟔.

Summary and Future Work 
In this paper, we defined an order on the set ℤ[𝜔] of Eisenstein 
integers that lie in the sector K0, #$L  of the complex plane. 
Properties of the said ordering were studied and used to arrive at 
prime labelings of some families of graphs. 
 
Since only a few classes of graphs were considered in this work, 
one can look at prime labelings of other families of graphs using 
Eisenstein integers. It is also worth looking into the possibility 
that Bertrand's Postulate also applies to the set of Eisenstein 
integers with the defined diagonal ordering. If so, then any tristar 
graph, and possibly many other types of graphs, can be shown 
to admit an Eisenstein prime labeling.  Another probable area of 
exploration is on graceful labelings of graphs using Eisenstein 
integers. Here, one may need to give a modified definition of a 
graceful graph to fit the nature of the elements of ℤ[𝜔]	and the 
order on this set. 
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